
Video-based Event Recognition

Ian Ballard and Lane McIntosh
CS 221 Artificial Intelligence Project Final Report

Stanford, CA 94305.

As the availability of video data rapidly increases, there is increased need for automatic methods
of extracting the events or highlights from the video material. We focus on the space of surveillance
camera footage, and develop systems that automatically detect moving humans, cars, and trucks.
Human motion includes loading or unloading objects from a vehicle, walking or running, and getting
into or out of a vehicle. Although this is an easy problem for the human visual system, noise from
camera instability and wind make this a difficult problem in artificial intelligence. We investigate
the binary classification performance of support vector machines and deep convolutional neural
networks.

Keywords: natural movies, event recognition, sensory processing, computer vision

INTRODUCTION

The human visual system possess a remarkable ability
to extract important environmental features quickly and
efficiently. Recent evidence indicates that this speed
and flexibility depends on visual processing at all levels
of an extensive hierarchy, beginning with the retina.
Although the retina is known to implement some simple
filters, recent research suggests that substantial visual
processing occurs at the level of the retina. In particular,
the retina is thought to implement a predictive model of
natural scenes which allows it to compute a compressed
signal representing only surprising deviations from the
statistics of natural scenes. Indeed, information from
225 million rods and cones is condensed into about a
million projections into the brain through only 2 layers
of neural units.

To make progress in understanding the computa-
tions implemented by the retina, one useful approach
could be to develop models that can implement pre-
dictive models of natural scenes, and then re-examine
neural data in relation to the properties of these models.
We will therefore try to develop models which can detect
when a new object has entered a natural scene, while
ignoring small changes due to wind, camera instability,
and other unknown factors.

FIG. 1: Example frames of people unloading objects from
their vehicles. This is an example action where having infor-
mation from previous and future scenes can provide a large
advantage to a classifier tasked with detecting events.

BACKGROUND AND LITERATURE

There has been a great deal of work assessing videos
data for interesting features. These approaches generally
capitalize on strengths of the computer vision research.

For instance, some techniques first perform object
identification, and then track those objects [1, 2]. Other
approaches extract features in the temporal domain and
attempt to hierarchically condense a movie into sub
sequences [3, 4], or integrate audio information [5]. Our
approach differs from these because we are attempting
to roughly constrain the modeling to known properties
of the retina.

In particular, object recognition and multisensory
integration occur in the brain, and retinal neurons
have very limited capacity to integrate information
across time. Thus, we do not expect our algorithm to
approach any benchmarks in the event detection field,
but merely acquiring above-chance performance could
provide interesting insights that motivate experimental
investigations.

FIG. 2: Example frame from the original VIRAT dataset be-
fore any downsampling or pre-processing.

EVALUATION

Data

We will train and test our models on the labeled VI-
RAT video dataset, a large-scale (over 40 GB) database
of fixed surveillance camera videos with annotations [6].
The dataset contains hours of 1920 by 1080 resolution

2

video at 30 frames per second. The video content
is primarily composed of long epochs where nothing
happens (with exception of changes due to wind or
camera imperfections) interspersed by short episodes of
cars or people entering the scene and moving around.
The annotations were performed by humans on Amazon
Mechanical Turk, and include frames of when objects
appear, as well as the object and action classification.

We will simplify the problem by decreasing the
video resolution, reducing the framerate, and converting
the RGB frames to grayscale. We also simplify the
annotations, considering only the binary presence of an
event, rather than the full classification of the event or
action. A sample frame is shown below.

Event Examples

The movie annotations in the VIRAT database
identify the start and end frames of 12 different events:
1: Person loading an Object to a Vehicle, 2: Person
Unloading an Object from a Car/Vehicle, 3: Person
Opening a Vehicle/Car Trunk, 4: Person Closing a
Vehicle/Car Trunk, 5: Person getting into a Vehicle, 6:
Person getting out of a Vehicle, 7: Person gesturing, 8:
Person digging, 9: Person carrying an object, 10: Person
running, 11: Person entering a facility, and 12: Person
exiting a facility.

Since we aim to identify when a new object has
entered the scene, we declare that an event has hap-
pened when event types 2, 6, 11, or 12 occur. Our labels
are 1 for every frame that the event is taking place.

Re-labeling

Unfortunately, the labels were 1’s only at the first
frame of an event, and perhaps more catastrophically,
did not include vehicles entering and exiting the scene.
To overcome these shortfalls, we hand-labeled the videos
so that every frame with human or vehicular motion was
labeled with 1 and everyother frame was labeled with 0.
In addition to improving the quality of the classification
problem, this also reduced the skew of our data, from the
original annotations where 99.7% of labels are 0 to our
new annotations where now 64% of labels are 1.

Oracle

The ideal performance of our system would be to de-
tect events with the reliability of human observers. Since
we hand-labeled the videos, we treat the labels that we
generated as ground truth. Since there is likely some
human error, we both hand-labeled partially overlapping
subsets of the videos and compared the fraction of our
labels that agreed to establish the oracle performance
level. We found that 86.9% of our labels agreed, and

FIG. 3: An illustration of the shortfalls present in the original
annotations from Mechanical Turk. In both frames, the red
boxes highlight human and vehicle motion, however only in
one of these red boxes (top frame, unloading a car) do the
annotations indicate an event is taking place. The red boxes
in the bottom frame, corresponding to a person walking across
a parking lot, a car driving into the parking lot, and a person
crossing the street, are all indicated as “no event.”

that this accuracy was fairly consistent across the dif-
ferent videos (standard deviation of 3% accuracy across
videos). This oracle upper bound on performance gives
an idea of the degree of human error that we would not
expect our model to correctly classify.

Baselines

Thresholding large frame-to-frame differences

A first pass attempt at event recognition might
simply look at the difference in pixel intensities between
frames, the intuition being that large differences in pixel
intensities implies that something different occurred
in the second frame. However, even in frames where
nothing in the scene changes (no new objects, and no
moving objects), around 50% of the pixels are differ-
ent. The majority of this difference comes from slight
imperfections in the stability of the camera, either with
respect to the precision of its measurements or due to
barely perceptible movements of the camera due to wind.

We found the best baseline performance by vary-
ing two thresholds - 1) the smallest intensity difference
between frames we care about, and 2) the smallest num-

3

FIG. 4: Example event after taking differences between
frames. This was classified in the dataset’s annotations as
type 6, person getting out of a vehicle. In addition to the
person getting out of a vehicle (red box), a truck can be seen
driving by in the lower right corner. This latter event is an
example of motion that was unlabeled in the original dataset
but labeled in our new ground-truth annotations. Addition-
ally, this is one of the more stable surveillance cameras, where
moving objects can be readily detected from the frame deriva-
tives.

FIG. 5: Example event after taking differences between
frames. This was classified in the dataset’s annotations as
type 2, person unloading an object from a vehicle.

FIG. 6: The same frame difference from the previous figure,
except filtered with a large spatial-scale center-surround 2d
filter.

ber of different pixels according to the first threshold
that we require before declaring that a new event has
occurred. Mathematically, this baseline was

predictiont = 1

∑
i,j

1[|p(i,j)t − p(i,j)t−1 | > α] > β

 , (1)

where α is the smallest pixel difference we count, β is
the smallest number of different pixels we consider, and

p
(i,j)
t is the pixel intensity at position (i, j) in frame t.

The best accuracy using this baseline was obtained by
setting a low threshold that detected 100% of events but
had an accuracy of only 64%.

FIG. 7: Example absolute difference between two frames
when there is no new event. Color bar is the value of the pixel
difference (each pixel has a 0 to 255 grayscale intensity). Even
though the scene is unchanged to the human observer, every
non-white spot on the image denotes a pixel that changed due
to wind, slight variations in sunlight, and camera fidelity and
stability. In this example, 55% of the pixels are different.

All 1’s or 0’s baseline

In the case where a dataset is skewed to have more
than 50% of one particular label, it is possible to perform
significantly above chance simply by always guessing one
particular label. While guessing 0’s would have yielded
a very high accuracy of 99.6% in our original dataset
that only labeled 1’s for the beginning frame of an event
and didn’t consider every moving object to be an event,
after re-labeling the dataset the best performance from
guessing only a single label would be 62% for guessing all
1’s.

PREPROCESSING

Features

We have spent the bulk of our time so far tuning
the preprocessing. First, we needed to implement data
reduction. We reduced the frame rate to 1 fps, as well
as downsampled the video resolution to 100 pixels in x.

4

One of the primary objectives of the early retina is
thought to be extracting sparse features via zero-mean
center-surround receptive fields [7]. We adopt this view-
point and preprocess our data by spatial filtering the
movies with center-surround filters. We parameterize
the center-surround filters as difference of Gaussians,
and create a bank of filters with varying surround sizes.

FIG. 8: Left: A 1-d slice of a center-surround spatial filter.
Right: The full 2-d heatmap of an example center-surround
spatial filter, very similar to the spatial receptive field of a
retinal ganglion cell.

FIG. 9: An example of a filtered image

Next, since we care about the difference between suc-
cessive frames, we transformed each image into a dif-
ference image between subsequent frames. We observed
that as a result of the filtering described above, the result-
ing images and difference images were very sparse. We
decided to leverage this by setting values close to 0 to 0
and using sparse features to optimize our classifier per-
formance. We flattened the difference images into a 1D
array, z-score normalized, and then set all pixels within
1/2 of a standard deviation of the mean to 0. This en-
sures that features are very sparse, and appears to result
in very low loss of information due to our spatial filter-
ing. Finally, we concatenate the frame difference vectors
across the videos to make a single training set.

FIG. 10: An example feature image after all preprocessing.

MODELS

Support Vector Machine

We train a support vector machine using the
scikitlearn library. We began by using a simple linear
kernel. We observed 98% accuracy. However, these
findings were suspicious because, across our > 6000
frame differences (at 1.0 frames/second), we only have
16 labelled events. Examining confusion matrices re-
vealed that the algorithm was making many false alarms.

Our approach was to hand-label images. For ex-
ample, if a person enters the scene walking, we labelled
every frame as positive while the person is in frame.
The original automatic labelling only takes into account
boundary conditions.

After hand labelling, we initially observed a marked
decrease in classification accuracy. Closer inspection
revealed that this was due to overfitting of the training
data where would get near perfect (98%) training accu-
racy and around 54% training accuracy. This indicated
a high variance problem and we took 3 main approaches
to reducing the variance: increasing the regularization,
limiting the number of positive weights by increasing
the threshold for setting features close to zero to zero
from .5 to 1 or 1.5 standard deviations from the mean.

All three of these approaches produced a strikingly
similar pattern. The algorithm would produce nearly
identical results until suddenly it would switch behavior
a begin drastically underfitting, by guessing that nearly
every frame difference is an event. This produced
around 60% training accuracy and 62% test accuracy
(note that 62% of our examples were positive). For
all three approaches, the shift was abrupt, and we
could not obtain intermediate behavior by changing the
parameters.

In order to try to counteract the high bias intro-
duced by these techniques, we also tried using a radial
basis function kernel, reasoning that the larger hypoth-

5

FIG. 11: Before augmenting our SVM feature templates, we
experienced a phase transition between overfitting and under-
fitting.

esis class of nonlinear features may reduce underfitting.
However, this merely caused a return to the high
variance problem (overfitting of training data).

We next turned to our pre-processing regime. We
were at this point using a relatively wide spatial filter
that blurred out most of the details of the image. We
chose this initially because we reasoned this would help
reduce effects related to small deviations due to wind.
By reducing the size of this filter, we were able to achieve
74% test accuracy with a radial basis function kernel.

We were unable to get good performance for a lin-
ear kernel. We speculate that this is because movement
generally involves deviations in adjacent pixels. Features
that pool over patches of adjacent pixels may more
robustly detect deviations due to genuine movement.

Examination of the confusion matrices revealed an
overall bias in our classifier to predict Change. Indeed, it
predicts change 80% of the time. This could be because
the training set is unbalanced, and so it would be
beneficial overall to be biased towards predicting change.
We re-ran the above analysis and randomly eliminate
examples so that the proportion was equal. Accuracy on
the test set was reduced to 65%. Interestingly, this did
not eliminate bias: the classifier still disproportionately
predicted change (78% of the time).

This bias is perhaps unsurprising, given that the
movies contain many frames where there is movement
during wind and camera instability. A cursory analysis
of the false positives indicate that this is likely the cause
of the problem. These problems could be addressed in

FIG. 12: The training error for the radial basis function kernel
SVM.

FIG. 13: The test error for the radial basis function kernel
SVM. Note the overall bias to predict Change.

a variety of ways. One potential solution would be to
create features that took into account several successive
frames. Genuinely moving objects would cause pixels
to change over a relatively larger span of the image
than a tree blowing in the wind. Nonlinear features
could potentially detect this type of motion. Another
possibility would be to create artificial negative data
where the frames are shifted by several pixels in different
directions. This may provide enough information for
the classifier to detect that whole image shifts are not
genuine movement.

Convolutional Neural Network

We implemented a convolutional network in Berkeley
Vision and Learning Center’s Caffe based on the winning
2012 ImageNet Challenge architecture of Krizhevsky,

6

FIG. 14: The architecture of our convolutional neural network, adapted from Krizhevsky et al., 2012 [8]. Red font denotes
parameters that were changed from the original architecture.

et al. [8, 9]. This network consists of 8 layers, 650,000
neurons, and 60 million parameters, and training it
for 50,000 iterations on Stanford Rye servers’ Nvidia
Tesla GPUs took around 10 hours. Some modifications
of the network from the published network included
reducing the number of iterations from 145,000 to
50,000, changing the data layer to accommodate 56x100
grayscale pre-processed movie frames instead of 256x256
RGB ImageNet images, and changing the output from
a 1000-way softmax to a simple binary classifier. Pre-
processing was the same as for the SVM, except there
was no need to vectorize the pre-processed images since
the convolutional neural network requires nearby pixels
to remain nearby.

Although we expected convolutional neural networks
to significantly outperform SVMs, since most of the
current image classification benchmarks are held by
convolutional neural networks [8, 10], the network had
an accuracy of 74.48% on held-out test data.

Perhaps due to the relative parcity of data we used
(approximately 6,000 frames versus 1.2 million images
in the ImageNet database), our network was strongly
overfitting, and had a training error of 94% compared to
the test error of 74%.

To compensate for this overfitting, we should regu-
larize our network by either 1) reducing the model
complexity, in particular the number of layers, 2)
increasing the fraction of neurons chosen for random
dropout [11], or 3) increasing the amount of labeled
data. In general, this was a good exercise to see that
although convolutional neural networks are currently
very popular, they can be difficult and slow to train, and
out-of-the-box results might not surpass the accuracy of
simpler models like support vector machines.

To continue work on this convolutional neural net-
work, one significant implementation hurdle would be to
either crop the movie frames to be square and re-label

the dataset, or to implement the network in Theano,
Torch7, or pylearn2 instead of Caffe. As it stands, Caffe
only supports square inputs, and so our 56x100 frames
were cropped to be 50x50. While this may be acceptable
for most image classification problems where the object
of interest is in the center, for several of our videos the
most motion stemmed from roads at the boundaries
of the movie. Given that many of the frames may
not contain any motion after cropping, it is surprising
that the convolutional neural network can still obtain
performance on par with the SVM.

CONCLUSIONS

We found that both support vector machines and
convolutional neural networks performed similarly after
downsampling the spatiotemporal resolution of movie
frames, taking temporal differences, and convolving
the difference frames with tuned edge-detecting filters.
This perforamce of around 74% represented an increase
of about 10% from the baseline, or about half of the
difference between our baseline and oracle performance.

We noticed large performance gains using smaller
center-surround filters, suggesting fine-grained structure
may be important for distinguishing between events
and non-events, for instance a human walking down the
street versus a plant swaying in the wind. For future
work, it would be interesting to see how skipping the
downsampling step might increase performance on the
convolutional neural network. For the SVM, we predict
that this would have less of an effect. Additionally, we
found that using nonlinear kernels for the SVM was also
essential for above-chance performance.

Overall, we found that re-labeling and pre-processing
was critical for achieving above chance performance. We
also found that while regularization controls a trade-off
between overfitting and underfitting, it was necessary
to increase the number of feature templates (filters) we

7

used to explore the space between these regimes.

We were excited to find that convolutional net-
works could perform as well as SVMs in this dataset.
These networks are based off of neural network models
that could conceivably apply to the retina. Going
forward, it will be fascinating to see whether a more
realistic retinal model (incorporating known anatomical
patterns) could recapitulate some of these findings. Such
a model would suggest that computation in the retina
can be considerably more sophisticated than has been
appreciated by the field, and would have important
implications for retinal prosthetics.

We would like to thank Jiaji Hu for his advice and feed-
back and Ben Poole for tips on how to speed up aspects
of OpenCV data handling.

[1] Wayne Wolf, Burak Ozer, and Tiehan Lv. Smart cameras
as embedded systems. Computer, 35(9):48–53, 2002.

[2] Stephan Hengstler, Daniel Prashanth, Sufen Fong, and
Hamid Aghajan. Mesheye: a hybrid-resolution smart
camera mote for applications in distributed intelligent
surveillance. In Proceedings of the 6th international con-
ference on Information processing in sensor networks,
pages 360–369. ACM, 2007.

[3] Lihi Zelnik-Manor and Michal Irani. Event-based anal-
ysis of video. In Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 2, pages II–123.

IEEE, 2001.
[4] Dong Xu and Shih-Fu Chang. Video event recognition us-

ing kernel methods with multilevel temporal alignment.
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 30(11):1985–1997, 2008.

[5] Marco Cristani, Manuele Bicego, and Vittorio Murino.
Audio-visual event recognition in surveillance video se-
quences. Multimedia, IEEE Transactions on, 9(2):257–
267, 2007.

[6] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh
Cuntoor, Chia-Chih Chen, Jong Taek Lee, Saurajit
Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis,
et al. A large-scale benchmark dataset for event recog-
nition in surveillance video. In Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 3153–3160. IEEE, 2011.

[7] Robert W Rodieck. The vertebrate retina: Principles of
structure and function. 1973.

[8] A Krizhevsky, I Sutskever, and GE Hinton. Imagenet
classification with deep convolutional neural networks.
nips 25, 2012.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[10] Rodrigo Benenson. Classification dataset results.
http://rodrigob.github.io/are_we_there_yet/
build/classification_datasets_results.html, 2014.
[Online; accessed December 12, 2014].

[11] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A sim-
ple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1):1929–1958,
2014.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

	Introduction
	Background and Literature
	Evaluation
	Data
	Event Examples
	Re-labeling
	Oracle
	Baselines
	Thresholding large frame-to-frame differences
	All 1's or 0's baseline

	Preprocessing
	Features

	Models
	Support Vector Machine
	Convolutional Neural Network

	Conclusions
	Acknowledgments
	References

